
Verifiably Following Complex Robot Instructions with Foundation Models
Supplementary

Benedict Quartey†∗, Eric Rosen∗, Stefanie Tellex, George Konidaris
Department of Computer Science, Brown University

CONTENTS

A1 Appendix Summary 1

A2 Extended Related Works 1
A2-A Foundation Models in Robotics 1
A2-B Planning Models in Robotics 2

A3 Language Instruction Module 2
A3-A Interactive Symbol Verification 3

A4 Spatial Grounding Module 4
A4-A 3D Spatial Comparators 4

A5 Task and Motion Planning Module 4

A6 Robot Skills 4

A7 Evaluation and Baseline Details 5
A7-A NLMap-Saycan Implementation Prompt 6
A7-B Code-as-Policies Implementation Prompt 7
A7-C Instruction set 7

References 9

A1. APPENDIX SUMMARY

These sections presents additional details on our approach
for leveraging foundation models and temporal logics to
verifiably follow expressive natural language instructions
with complex spatiotemporal constraints without prebuilt
semantic maps. We encourage readers to visit our website
robotlimp.github.io for project summary and demonstration
videos.

A2. EXTENDED RELATED WORKS

A. Foundation Models in Robotics

Grounding language referents to entities and actions in
the world [1], [2], [3], [4] is challenging in part due to the
fact that complex perceptual and behavioral meaning can be
constructed from the composition of a wide-range of open-
vocabulary components[5], [6], [7], [8], [2]. To address this
problem, foundation models have recently garnered interest
as an approach for generating perceptual representations that
are aligned with language [9], [10], [11], [12], [13], [14].
Because there are an ever-expanding number of ways foun-
dation models are being leveraged for instruction following

∗Equal Contribution
†Corresponding Author (Email: benedict quartey@brown.edu)

in robotics (e.g: generating plans [14], code [15], etc.), we
focus our review on the most related approaches in two
relevant application areas: 1) generating natural language
queryable scene representations and 2) generating robot plans
for following natural language instruction [16], [17].
Visual scene understanding: The most similar approach
for visual scene understanding to ours is NLMap [11], a
scene representation that affords grounding open-vocabulary
language queries to spatial locations via pre-trained visual
language models. Given a sequence of calibrated RGB-
D camera images and pre-trained visual-language models,
NLMap supports language-queries by 1) segmenting out the
most likely objects in the 2D RGB images based on the
language queries, and 2) estimating the most likely 3D posi-
tions via back-projection of the 2D segmentation masks using
the depth data and camera pose. While NLMap is suitable
for handling complex descriptions of individual objects (e.g:
“green plush toy“), it is fundamentally unable to handle
instructions involving complex constraints between multiple
objects since it has no way to account for object-object
relationships (e.g: “the green plush toy that is between the
toy box and door“). LIMP handles these more complicated
language instructions by using a novel spatial grounding
module to easily incorporate a wide-variety of complex
spatial relationships between objects. In addition, our scene
representation is compatible with both LLM planners as well
as TAMP solvers, whereas NLMap is only compatible with
LLM planners.

While NLMap is the most relevant approach to ours, there
are other approaches for visual scene understanding and task
planning with foundation models which are worth highlight-
ing. VoxPoser [18] leverages the abilities of LLMs to identify
affordances and write code for manipulation tasks, along with
VLMs complementary abilities to identify open-vocabulary
entities in the environment. SayPlan [19] integrates 3D scene
graphs with LLM-based planners to bridge the gap between
complex, heirarchial scene representations and scalable task
planning with open-ended task specifications. Generalizable
Feature Fields (GeFF) [20] use an implicit scene representa-
tion to support open-world manipulation and navigation via
an extension of Neural Radiance Fields (NeRFs) and feature
distillation in NeRFs. OK-Robot [21] adopts a system-first
approach to solving structured mobile pick-and-place tasks
with foundation models by offering an integrated solution to
object detection, mapping, navigation and grasp generation.
While these methods are related, none of them have all
the features of LIMP: 1) Explicit support for both LLM-

https://robotlimp.github.io/

based planning and off-the-shelf task and motion planning
approaches, 2) Verifiable representations for following com-
plex natural language instructions in mobile manipulation
domains that involve object-object relationships, and 3) The
ability to dynamically generate task-relevant state abstrac-
tions (semantic maps) for individual instructions.
Language instruction for robots: Our approach to handling
complex natural language instructions involves translating
the command into a temporal logic expression. This problem
framing allows us to leverage state-of-the-art techniques from
machine translation, such as instruction-tuned large language
models. Most similar to our approach in this regard is [16],
which uses a multi-stage LLM-based approach and finetun-
ing to perform entity-extraction and replacement to translate
natural language instructions into temporal logic expressions.
However, [16] relies on a prebuilt semantic map that grounds
expression symbols, limiting the scope of instructions it
can operate since landmarks are predetermined. Instead,
our approach interfaces with a novel scene representation
that supports open-vocabulary language and generates the
relevant landmarks based on the open-vocabulary instruction.
Additionally, the symbols in our temporal logic translation
correspond to parameterized task relevant robot skills as
opposed to propositions of referent entities extracted from
instructions.

B. Planning Models in Robotics

Semantic Maps: Semantic maps [22] are a class of scene
representations that capture semantic (and typically geo-
metric) information about the world, and can be used in
cojunction with planners to generate certain types of complex
robot behavior like collision-free navigation with spatial con-
straints [23], [24]. However, leveraging semantic maps for
task planning with mobile manipulators has been challenging
since the modeling information needed may highly depend
on the robot’s particular skills and embodiment. [25] recently
proposed Action-Oriented Semantic Maps (AOSMs), which
are a class of semantic maps that include additional models
of the regions of space where the robot can execute manip-
ulation skills (represented as symbols). [25] demonstrated
that AOSMs can be used as a state representation that
supports TAMP solvers in mobile manipulation domains. Our
scene representation is similar to an AOSM since it captures
spatial information about semantic regions of interest, and
is compatible with TAMP solvers, but largely differs in
that AOSMs require learning via online interaction with the
scene. Instead, our approach leverages foundation models
and requires no online learning. Also, once an AOSM is
generated for a scene, there is only a closed-set of goals
that can be planned for, whereas our approach can handle
open-vocabulary task specifications.
Task and Motion Planning: Task and Motion planning ap-
proaches are hierarchical planning methods that involve high-
level task planning (with a discrete state space) [26] and low-
level motion planning (with a continuous state space) [27].
The low-level motion planning problem involves generating
paths to goal sets through continuous spaces (e.g: configu-

ration space, cartesian space) with constraints on infeasible
regions. When the constraints and dynamics can change, it is
referred to as multi-modal motion planning, which naturally
induces a high-level planning problem that involves choosing
which sequence of modes to plan through, and a low-level
planning problem that involves moving through a particular
mode. Finding high-level plan skeletons and satisfying low-
level assignment values for parameters to achieve goals is a
challenging bi-level planning problem[27]. LIMP contains
sufficient information to produce a problem and domain
description augmented with geometric information for bi-
level TAMP solvers like [28], [29].

A3. LANGUAGE INSTRUCTION MODULE

We implement a two-stage prompting strategy in our
language instruction module to translate natural language
instructions into LTL specifications. The first stage trans-
lates a given instruction into a conventional LTL formula,
where propositions refer to open-vocabulary objects. For
any given instruction, we dynamically generate K in-context
translation examples from a standard dataset [30] of natural
language and LTL pairs, based on cosine similarity with the
given instruction. Here is the exact text prompt used:

1 You are a LLM that understands operators involved with
Linear Temporal Logic (LTL), such as F, G, U, &, |, ˜
, etc. Your goal is translate language input to LTL

output.
2 Input:<generated_example_instruction>
3 Output:<generated_example_LTL>
4 ...
5 Input:<given_instruction>
6 Output:

Listing 1: Base prompt used to obtain a conventional LTL formula from a
natural language query

The second stage takes the given instruction and the LTL
response from the first stage as input to generate a new
LTL formula with predicate functions that correspond to
parameterized robot skills. Skill parameters are instruction
referent objects expressed in our novel Composable Referent
Descriptor (CRD) syntax. CRDs enable referent disambigua-
tion by chaining comparators that encode descriptive spatial
information. We define eight spatial comparators and provide
their descriptions as part of the second stage prompt. We find
that LLMs conditioned on this information and a few exam-
ples are able translate arbitrarily complex instructions with
appropriate comparator choices. Here is the exact prompt
used:

1 You are an LLM for robot planning that understands
operators involved with Linear Temporal Logic (LTL),
such as F, G, U, &, |, ˜ , etc. You have a finite set
of robot predicates and spatial predicates, given a

language instruction and an LTL formula that
represents the given instruction, your goal is to
translate the ltl formula into one that uses
appropriate composition of robot and spatial
predicates in place of propositions with relevant
details from original instruction as arguments.

2 Robot predicate set (near,pick,release).
3 Usage:
4 near[referent_1]:returns true if the desired spatial

relationship is for robot to be near referent_1.
5 pick[referent_1]:can only execute picking skill on

referent_1 and return True when near[referent_1].

6 release[referent_1,referent_2]:can only execute release
skill on referent_1 and return True when near[
referent_2].

7 Spatial predicate set (isbetween,isabove,isbelow,isleftof,
isrightof,isnextto,isinfrontof,isbehind).

8 Usage:
9 referent_1::isbetween(referent_2,referent_3):returns true

if referent_1 is between referent_2 and referent_3.
10 referent_1::isabove(referent_2):returns True if referent_1

is above referent_2.
11 referent_1::isbelow(referent_2):returns True if referent_1

is below referent_2.
12 referent_1::isleftof(referent_2):returns True if

referent_1 is left of referent_2.
13 referent_1::isrightof(referent_2):returns True if

referent_1 is right of referent_2.
14 referent_1::isnextto(referent_2):returns True if

referent_1 is close to referent_2.
15 referent_1::isinfrontof(referent_2):returns True if

referent_1 is in front of referent_2.
16 referent_1::isbehind(referent_2):returns True if

referent_1 is behind referent_2.
17 Rules:
18 Strictly only use the finite set of robot and spatial

predicates!
19 Strictly stick to the usage format!
20 Compose spatial predicates where necessary!
21 You are allowed to modify the structure of Input_ltl for

the final Output if it does not match the intended
Input_instruction!

22 You should strictly only stick to mentioned objects,
however you are allowed to propose and include
plausible objects if and only if not mentioned in
instruction but required based on context of
instruction!

23 Pay attention to instructions that require performing
certain actions multiple times in generating and
sequencing the predicates for the final Output
formula!

24 Example:
25 Input_instruction: Go to the orange building but before

that pass by the coffee shop, then go to the parking
sign.

26 Input_ltl: F (coffee_shop & F (orange_building & F
parking_sign))

27 Output: F (near[coffee_shop] & F (near[orange_building]
& F near[parking_sign]))

28 Input_instruction: Go to the blue sofa then the laptop,
after that bring me the brown bag between the
television and the kettle on the left of the green
seat, I am standing by the sink.

29 Input_ltl: F (blue_sofa & F (laptop & F (brown_bag & F
(sink))))

30 Output: F (near[blue_sofa] & F (near[laptop] & F (near[
brown_bag::isbetween(television,kettle::isleftof(
green_seat))] & F (pick[brown_bag::isbetween(
television,kettle::isleftof(green_seat))] & F (near[
sink] & F (release[brown_bag,sink]))))))

31 Input_instruction: Hey need you to pass by chair between
the sofa and bag, pick up the bag and go to the
orange napkin on the right of the sofa.

32 Input_ltl: F (chair & F (bag & F (orange_napkin)))
33 Output: F (near[chair::isbetween(sofa,bag)] & F (near[

bag] & F (pick[bag] & F (near[orange_napkin::
isrightof(sofa)]))))

34 Input_instruction: Go to the chair between the green
laptop and the yellow box underneath the play toy

35 Input_ltl: F (green_laptop & F (yellow_box & F (
play_toy & F (chair))))

36 Output: F (near[chair::isbetween(green_laptop,yellow_box
::isbelow(play_toy))])

37 Input_instruction: Check the table behind the fridge and
bring two beers to the couch one after the other

38 Input_ltl: F (check_table & F (bring_beer1) & F (
bring_beer2) & F (couch))

39 Output: F (near[table::isbehind(fridge)] & F (pick[beer]
& F (near[couch] & F (release[beer,couch] & F (

near[table::isbehind(fridge)] & F (pick[beer] & F (
near[couch] & F (release[beer,couch]))))))))

40 Input_instruction: <given_instruction>
41 Input_ltl: <stage1_ltl_response>
42 Output:

Listing 2: Second stage prompt to output our LTL syntax with CRD
parameterized robot skills

A. Interactive Symbol Verification

Verifying sampled LTL formulas is essential, as such
we implement an interactive dialog system that presents
users with extracted referent composible referent descriptors
(CRDs) in sampled formulas as well as the implied task
structure––encoded in the sequence of state-machine
transition expressions that must hold to progressively
solve the task. We translate the task structure into English
statements via a simple deterministic strategy that replaces
logical connectives and skill predicates from the formula
with equivalent English phrases. Users can verify a formula
as correct or provide corrective statements which are used
to reprompt the LLM to obtain new formulas. Below is the
exact prompt used for regenerating formulas.

1 There was a mistake with your output LTL formula: Error
with <verification_type>! Consider the clarification
feedback and regenerate the correct output for the
Input_instruction. Make sure to adhere to all rules
and instructions in your original prompt!

2 previous_output:<last_response>
3 error_clarification: <given_error_clarification>
4 correct_output:

Listing 3: Corrective reprompting prompt used to obtain new LTL formulas

To illustrate, the instruction “Bring the green plush toy to
the whiteboard in front of it” yields the interactive Referent
and Task Structure Verification dialog below:

1 **************************
2 Instruction Following
3 **************************
4 Input_instruction: "Bring the green plush toy to the

whiteboard in front of it"
5 Sampled LTL formula: F(A & F(B & F(C & FD)))
6 A: near[green_plush_toy]
7 B: pick[green_plush_toy]
8 C: near[whiteboard::isinfrontof(green_plush_toy)]
9 D: release[green_plush_toy, whiteboard::isinfrontof(

green_plush_toy)]
10

11 ***************************
12 Referent Verification
13 ***************************
14 I extracted this list of relevant objects based on your

instruction:
15 * whiteboard::isinfrontof(green_plush_toy)
16 * green_plush_toy
17 Does this match your intention? (y/n)
18

19 ****************************
20 Task Structure Verification
21 ****************************
22 Based on my understanding here is the sequence of subgoal

objectives needed to satisfy the task:
23 Subgoal_1:
24 Logical Expression: A&!B
25 English translation: I should be near the [

green_plush_toy] and not have picked up the [
green_plush_toy]

26 Subgoal_2:
27 Logical Expression: B&!C
28 English translation: I should have picked up the [

green_plush_toy] and not be near the [whiteboard::
isinfrontof(green_plush_toy)]

29 Subgoal_3:
30 Logical Expression: C&!D
31 English translation: I should be near the [whiteboard

::isinfrontof(green_plush_toy)] and not have released
the [green_plush_toy] at the [whiteboard::

isinfrontof(green_plush_toy)]
32 Subgoal_4:
33 Logical Expression: D
34 English translation: I should have released the [

green_plush_toy] at the [whiteboard::isinfrontof(
green_plush_toy)]

35 Does this match your intention? (y/n)

Listing 4: Interactive referent and task structure verification dialog.

A4. SPATIAL GROUNDING MODULE

The spatial grounding module detects and localizes spe-
cific instances of objects referenced in a given instruction by
first detecting, segmenting and back-projecting all referent
occurances and then filtering based on the descriptive spa-
tial details captured by each referent’s composable referent
descriptor (CRD). We use the Owl-Vit model [31] to detect
bounding boxes of open-vocabulary referents and SAM [32]
to generate masks from detected bounding boxes. To illus-
trate referent filtering via spatial information, consider an
example scenario where the goal is to resolve the composable
referent descriptor below:

whiteboard :: isinfrontof(green plush toy). (A.1)

Let W = {w1, w2, . . . , wn} and G = {g1, g2, . . . , gm}
represent the set of representative 3D positions of detected
whiteboards and green plush toys respectively. The cartesian
product of these sets enumerates all possible pairs (w, g) for
comparison.

W ×G = {w, g) | w ∈W, g ∈ G} (A.2)

The ‘isinfrontof(w, g)’ comparator is applied to each pair,
yielding a subset S that contains only those ‘whiteboards‘
that satisfy the ‘isinfronto’ condition with at least one
‘green plush toy’.

S = {w ∈W | ∃g ∈ G such that isinfrontof(w, g) is true}
(A.3)

A. 3D Spatial Comparators

Our 3D spatial comparators enable Relative Frame of
Reference (FoR) spatial reasoning between referents, based
on their backprojected 3D positions. Threshold values in
the spatial comparators give users the ability to specify the
sensitivity or resolution at which spatial relationships are
resolved, we keep all threshold values fixed across all exper-
iments. Below is a description of each spatial comparator.

1 1. isbetween(referent_1_pos, referent_2_pos,
referent_3_pos, threshold): Returns true if
referent_1 is within ’threshold’ distance from the
line segment connecting referent_2 to referent_3,
ensuring it lies in the directional path between them
without extending beyond.

2 2. isabove(referent_1_pos, referent_2_pos, threshold):
Returns true if the z-coordinate of referent_1
exceeds that of referent_2 by at least ’threshold’.

3 3. isbelow(referent_1_pos, referent_2_pos, threshold):
Returns true if the z-coordinate of referent_1 is
less than that of referent_2 by more than ’threshold
’.

4 4. isleftof(referent_1_pos, referent_2_pos, threshold):
Returns true if the y-coordinate of referent_1
exceeds that of referent_2 by at least ’threshold’,
indicating referent_1 is to the left of referent_2.

5 5. isrightof(referent_1_pos, referent_2_pos, threshold):
Returns true if the y-coordinate of referent_1 is
less than that of referent_2 by more than ’threshold
’, indicating referent_1 is to the right of
referent_2.

6 6. isnextto(referent_1_pos, referent_2_pos, threshold):
Returns true if the Euclidean distance between
referent_1 and referent_2 is less than ’threshold’,
indicating they are next to each other.

7 7. isinfrontof(referent_1_pos, referent_2_pos, threshold):
Returns true if the x-coordinate of referent_1 is

less than that of referent_2 by more than ’threshold
’, indicating referent_1 is in front of referent_2.

8 8. isbehind(referent_1_pos, referent_2_pos, threshold):
Returns true if the x-coordinate of referent_1
exceeds that of referent_2 by at least ’threshold’,
indicating referent_1 is behind referent_2.

Listing 5: Implementation description of 3D spatial comparators

A5. TASK AND MOTION PLANNING MODULE

We present pseudocode for our Progressive Motion Plan-
ner (Alg.1) and our algorithm for generating Task Progres-
sion Semantic Maps (Alg.2). Alg.2 generates a TPSMMtpsm
by integrating an environment map (M) and a referent
semantic map (Mrsm) given a logical transition expression
(T), a desired automaton state (S ′), and a nearness threshold
(θ). The algorithm first initializes Mtpsm with a copy of
M and extracts relevant instruction predicates from T . For
each predicate (parameterized skill), the algorithm identifies
satisfying referent positions in Mrsm, generates a spherical
grid of surrounding points within a radius θ, and assesses
how these points affect the progression of the task automaton
towards S ′. These points demarcate regions of interest, and
are assigned a value of 1 if they cause the automaton to
transition to the desired state, -1 if they lead to a different
automaton state or violate the automaton, and 0 if they do
not affect the automaton. The points are then integrated into
Mtpsm, yielding a semantic map that identifies goal and
constraint violating regions.

A6. ROBOT SKILLS

We define three predicate functions: near, pick and re-
lease for the navigation, picking and placing skills required
for multi-object goal navigation and mobile pick-and-place.
As highlighted in the main paper, we formalize navigation
as continuous path planning problems and manipulation as
object parameterized options. We discuss navigation at length
in the paper, so here we focus on the pick and place
manipulation skills.

Pick Skill: Once the robot has executed the near skill and
is at the object to be manipulated, it takes a photo of the
current environment to detect the object using the Owl-Vit
model. The robot is guaranteed to be facing the object as
the computed path plan uses the backprojected object 3D
position to compute yaw angles for the robot. After detecting
the object in the picture, we obtain a segmentation mask
from detected boundary box using the Segment Anything
model, and compute the center pixel of this mask. We feed
this center pixel to the Boston dynamics grasping API to
compute a motion plan to grasp the object.

Release Skill: We implement a simple routine for the
release skill which takes two parameters: the object to be
placed and the place receptacle. Once a navigation skill

Algorithm 1 Progressive Motion Planning Algorithm

1: procedure PMP(Xstart, φ,M,Mrsm, θ)
Input:
Xstart: Start position in the environment.
φ: CRD syntax LTL formula specifying task objec-

tives.
M: Environment map.
Mrsm: Referent semantic map.
θ: Nearness threshold.

Output:
Π: Generated task and motion plan.

2: A ← ConstructAutomaton(φ)
3: path← SelectAutomatonPath(A) ▷ Task plan
4: while Π.status is active do
5: while A.state != path.acceptingState do
6: S, T ,S ′ ←
A.GetTransition(path.currentStep)

7: objective← NextObjectiveType(T)
8: if objective = “skill” then
9: Π.UpdateWithSkill(T)

10: A.UpdateAutomatonState(S ′)
11: else if objective = “navigation” then
12: Mparams ←M,Mrsm, T ,A,S ′, θ
13: Mtpsm ←

GENERATETPSM(Mparams)
14: O ← GenerateObstacleMap(Mtpsm)
15: plan← FMT∗(Xstart,O) ▷ Path plan
16: if plan.exists then
17: Π.UpdateWithPlan(plan)
18: Xstart ← plan.endPosition
19: A.UpdateAutomatonState(S ′)
20: else
21: Π,A, path← Backtrack(Π,A, path)
22: end if
23: end if
24: end while
25: end while
26: return Π
27: end procedure

gets the robot to the place receptacle, the robot gently
moves its arm up or down to release the grasped object,
based on the place receptable 3D position. Future work will
implement more complex semantic placement strategies to
better leverage LIMP’s awareness and spatial grounding
of instruction specific place receptacles. Kindly, visit our
website to see demonstrations of these skills.

A7. EVALUATION AND BASELINE DETAILS

All computation including planning, loading and running
pretrained visual language models was done on a single
computer equipped with one NVIDIA GeForce RTX 3090
GPU. We leverage GPT-4-0613 as the underlying LLM for
our instruction understanding module and all our baselines.
In all experiments we set the LLM temperature to 0, however
since deterministic greedy token decoding is not guaranteed

Algorithm 2 Task Progression Semantic Mapping Algorithm

1: procedure GENERATETPSM(M,Mrsm, T ,A,S ′, θ)
Input:
M: Environment map.
Mrsm: Referent semantic map.
T : Automaton transition expression.
A: Task Automaton.
S ′: Desired State.
θ: Nearness threshold.

Output:
Mtpsm: Task Progression Semantic Map.

2: Mtpsm ← Copy(M)
3: P ← ExtractRelevantPredicates(T)
4: for p in P do
5: R ← QueryPositions(Mrsm, p)
6: for r in R do
7: G← {g | g = r + δ, ∥δ∥ ≤ θ} ▷ spherical

grid of surrounding points
8: for g in G do
9: Q ← TruePredicatesAt(g,Mrsm, θ)

10: Snext ← ProgressAutomaton(A,Q)
11: if Snext = S ′ then
12: g.value← 1 ▷ Goal value
13: else if IsUndesired(Snext) then
14: g.value← −1 ▷ Avoidance value
15: else
16: g.value← 0
17: end if
18: end for
19: AddPoints(Mtpsm, G)
20: end for
21: end for
22: return Mtpsm

23: end procedure

with GPT4, we perform three (3) queries for each instruction
and evaluate on the most recurring response (mode response).

We compare LIMP with baseline implementations
of NLMap-Saycan [11] and Code-as-policies [15]. Both
baselines use the same GPT-4 LLM, prompting structure, and
in-context learning examples as our language understanding
module. We integrate our composible referent descriptor
syntax, spatial grounding module and low-level robot
control into these baselines as APIs. This enables baselines
to execute plans by querying relevant object positions, using
our FMT* path planner to find paths to said positions and
executing manipulation options.

We visualize some qualitative results of LIMP from
our experiments in Figure A.1. We also highlight results
in Figure A.2 that illustrates how our interactive symbol
verification and reprompting strategy A3-A improves
instruction satisfaction with minimal chat turns for different
instruction sets.

https://robotlimp.github.io/

Fig. A.1: [A] Sample generated plan for a multi object-goal navigation task. [B] Sample generated plan for a mobile pick-and-place task.

Fig. A.2: Our interactive reprompting strategy implemented in the symbol
verification node regenerates corrective formulas that improve plan success
rates with minimal chat turns.

A. NLMap-Saycan Implementation Prompt

1 You are an LLM for robot planning that understands logical
operators such as &, |, ˜ , etc. You have a finite

set of robot predicates and spatial predicates, given
a language instruction, your goal is to generate a

sequence of actions that uses appropriate composition
of robot and spatial predicates with relevant

details from the instruction as arguments.
2 Robot predicate set (near,pick,release).
3 Usage:
4 near[referent_1]:returns true if the desired spatial

relationship is for robot to be near referent_1.
5 pick[referent_1]:can only execute picking skill on

referent_1 and return True when near[referent_1].
6 release[referent_1,referent_2]:can only execute release

skill on referent_1 and return True when near[
referent_2].

7 Spatial predicate set (isbetween,isabove,isbelow,isleftof,
isrightof,isnextto,isinfrontof,isbehind).

8 Usage:
9 referent_1::isbetween(referent_2,referent_3):returns true

if referent_1 is between referent_2 and referent_3.
10 referent_1::isabove(referent_2):returns True if referent_1

is above referent_2.
11 referent_1::isbelow(referent_2):returns True if referent_1

is below referent_2.
12 referent_1::isleftof(referent_2):returns True if

referent_1 is left of referent_2.
13 referent_1::isrightof(referent_2):returns True if

referent_1 is right of referent_2.
14 referent_1::isnextto(referent_2):returns True if

referent_1 is close to referent_2.

15 referent_1::isinfrontof(referent_2):returns True if
referent_1 is in front of referent_2.

16 referent_1::isbehind(referent_2):returns True if
referent_1 is behind referent_2.

17 Rules:
18 Strictly only use the finite set of robot and spatial

predicates!
19 Strictly stick to the usage format!
20 Compose spatial predicates where necessary!
21 You should strictly stick to mentioned objects, however

you are allowed to propose and include plausible
objects if and only if not mentioned in instruction
but required based on context of instruction!

22 Pay attention to instructions that require performing
certain actions multiple times in generating and
sequencing the predicates for the final Output!

23 Example:
24 Input_instruction: Go to the orange building but before

that pass by the coffee shop, then go to the parking
sign.

25 Output:
26 1. near[coffee_shop]
27 2. near[orange_building]
28 3. near[parking_sign]
29 Input_instruction: Go to the blue sofa then the laptop,

after that bring me the brown bag between the
television and the kettle on the left of the green
seat, I am standing by the sink.

30 Output:
31 1. near[blue_sofa]
32 2. near[laptop]
33 3. near[brown_bag::isbetween(television,kettle::isleftof(

green_seat))]
34 4. pick[brown_bag::isbetween(television,kettle::isleftof(

green_seat))]
35 5. near[sink]
36 6. release[brown_bag,sink]
37 Input_instruction: Hey need you to pass by chair between

the sofa and bag, pick up the bag and go to the
orange napkin on the right of the sofa.

38 Output:
39 1. near[chair::isbetween(sofa,bag)]
40 2. near[bag]
41 3. pick[bag]
42 4. near[orange_napkin::isrightof(sofa)]
43 Input_instruction: Go to the chair between the green

laptop and the yellow box underneath the play toy
44 Output:
45 1. near[chair::isbetween(green_laptop,yellow_box::isbelow(

play_toy))]
46 Input_instruction: Check the table behind the fridge and

bring two beers to the couch one after the other
47 Output:
48 1. near[table::isbehind(fridge)]
49 2. pick[beer]
50 3. near[couch]
51 4. release[beer,couch]
52 5. near[table::isbehind(fridge)]
53 6. pick[beer]
54 7. near[couch]
55 8. release[beer,couch]

56 Input_instruction: <given_instruction>
57 Output:

Listing 6: Exact prompt to implement NlMap-Saycan LLM planner

B. Code-as-Policies Implementation Prompt

1 ##Python robot planning script
2 from robotactions import near, pick, release
3 spatial_relationships = [
4 "isbetween", #referent_1::isbetween(referent_2,referent_3)

:returns true if referent_1 is between referent_2 and
referent_3.

5 "isabove", #referent_1::isabove(referent_2):returns True
if referent_1 is above referent_2.

6 "isbelow", #referent_1::isbelow(referent_2):returns True
if referent_1 is below referent_2.

7 "isleftof", #referent_1::isleftof(referent_2):returns
True if referent_1 is left of referent_2.

8 "isrightof", #referent_1::isrightof(referent_2):returns
True if referent_1 is right of referent_2.

9 "isnextto", #referent_1::isnextto(referent_2):returns
True if referent_1 is close to referent_2.

10 "isinfrontof", #referent_1::isinfrontof(referent_2):
returns True if referent_1 is in front of referent_2.

11 "isbehind" #referent_1::isbehind(referent_2):returns True
if referent_1 is behind referent_2.]

12 ##Rules:
13 ##Strictly only use the finite set of robot and spatial

predicates!
14 ##Strictly stick to the usage format!
15 ##Compose spatial predicates where necessary!
16 ##You should strictly stick to mentioned objects, however

you are allowed to propose and include plausible
objects if and only if not mentioned in instruction
but required based on context of instruction!

17 ##Pay attention to instructions that require performing
certain actions multiple times in generating and
sequencing the predicates for the final Output!

18 # Go to the orange building but before that pass by the
coffee shop, then go to the parking sign.

19 ordered_navigation_goal_referents = ["coffee_shop", "
orange_building", "parking_sign"]

20 for referent in ordered_navigation_goal_referents:
21 near(referent)
22 # Go to the blue sofa then the laptop, after that bring me

the brown bag between the television and the kettle
on the left of the green seat, I am standing by the
sink.

23 ordered_navigation_goal_referents = ["blue_sofa", "laptop
", "brown_bag::isbetween(television,kettle::isleftof(
green_seat))", "sink"]

24 referents_to_pick= ["brown_bag::isbetween(television,
kettle::isleftof(green_seat))"]

25 release_location_referents = ["sink"]
26 picked_item = None
27 for referent in ordered_navigation_goal_referents:
28 near(referent)
29 if referent in referents_to_pick:
30 pick(referent)
31 picked_item = referent
32 if referent in release_location_referents:
33 release(picked_item, referent)
34 #Hey need you to pass by chair between the sofa and bag,

pick up the bag and go to the orange napkin on the
right of the sofa.

35 ordered_navigation_goal_referents = ["chair::isbetween(
sofa,bag)", "bag", "orange_napkin::isrightof(sofa)"]

36 referents_to_pick= ["bag"]
37 picked_item = None
38 for referent in ordered_navigation_goal_referents:
39 near(referent)
40 if referent in referents_to_pick:
41 pick(referent)
42 picked_item = referent
43 #Go to the chair between the green laptop and the yellow

box underneath the play toy
44 near("chair::isbetween(green_laptop,yellow_box::isbelow(

play_toy))")
45 #Check the table behind the fridge and bring two beers to

the couch one after the other
46 for i in range(2):
47 near("table::isbehind(fridge)")

48 pick("beer")
49 near("couch")
50 release("beer", "couch")
51

52 #<given_instruction>

Listing 7: Exact prompt to implement Code-as-policies planner

C. Instruction set

We perform a large-scale evaluation on 150 instructions
across five real-world environments. The taskset includes 24
tasks with fine-grained object descriptions (NLMD) from
[11], 25 tasks with complex language (NLMC) from [11],
25 tasks with simple structured phrasing (OKRB) from [21],
37 tasks with complex temporal structures (CT) from [16],
and an additional 39 tasks we propose that have descriptive
spatial constraints and temporal structures (CST).

1 1: put the red can in the trash bin
2 2: put the brown multigrain chip bag in the woven basket
3 3: find the succulent plant
4 4: pick up the up side down mug
5 5: put the apple on the macbook with yellow stickers
6 6: use the dyson vacuum cleaner"
7 7: bring the kosher salt to the kitchen counter
8 8: put the used towels in washing machine
9 9: move the used mug to the dish washer

10 10: place the pickled cucumbers on the shelf
11 11: find my mug with the shape of a donut
12 12: put the almonds in the almond jar
13 13: fill the zisha tea pot with a coke from the cabinet
14 14: take the slippery floor sign with you
15 15: take the slippers that have holes on them to the shoe

rack
16 16: find the mug on the mini fridge
17 17: bring the mint flavor gum to the small table
18 18: find some n95 masks
19 19: grab the banana with most black spots
20 20: fill the empty bottle with lemon juice
21 21: throw away the apple that’s about to rot
22 22: throw away the rotting banana
23 23: take the box of organic blueberries out of the fridge
24 24: give a can of diet coke to the toy cat

Listing 8: Nlmap Detailed Object Tasks (NLMD)

1 1: I opened a pepsi earlier, bring an open can to the
orange table

2 2: I spilled my coke, can you put a replacement on the
kitchen counter

3 3: I spilled some coke on the television, go and bring
something to clean it up

4 4: I accidentally dropped that jalapeno chips after eating
it. Would you mind throwing it away

5 5: I like fruits, can you put something I would like on
the yellow sofa for me

6 6: There is a green counter, a yellow counter, and a table
. visit all the locations

7 7: There is a green counter, a trash can, and a table.
visit all the locations

8 8: Redbull is my faviorite drink, can you put one on the
desk please

9 9: Would you bring a coke can to the door for me
10 10: Please, move the pepsi to the red counter
11 11: Can you move the coke can to the orange counter
12 12: Would you throw away the bag of chips for me
13 13: Put an energy bar and water bottle on the table
14 14: Bring a lime soda and a bag of chips to the sofa
15 15: Can you throw away the apple and bring a coke to the

bed
16 16: Bring a 7up can and a tea to the office desk
17 17: Move the multigrain chips to the table and an apple to

the yellow counter
18 18: Move the lime soda, the sponge, and the water bottle

to the table
19 19: Bring two sodas to the table
20 20: Move three cokes to the trash can
21 21: Throw away two cokes from the counter

22 22: Bring two different sodas to the cabinet, there is a
coke, pepsi, soup, tea and 7up in the fridge

23 23: Bring an apple, a coke, and water bottle to the sofa
24 24: I spilled my coke on the table, throw it away and then

bring something to help clean
25 25: I just worked out, can you bring me a drink and a

snack to recover, i am on the sof

Listing 9: Nlmap Complex Language Understanding Tasks (NLMC)

1 1: Move the Takis on the desk to the nightstand
2 2: Move the soda can to the box
3 3: Move the purple shampoo to the red bag
4 4: Move the white meds box to the trash bin
5 5: Move the power adapter to the chair
6 6: Move the blue gloves to the sink
7 7: Move the McDonalds paper bag to the stove
8 8: Move the herbal tea can to the box
9 9: Move the cooking oil bottle to the marble surface

10 10: Move the milk bottle to the chair
11 11: Move the purple shampoo to the white rack
12 12: Move the purple lightbulb box to the sofa chair
13 13: Pick up purple medicine, drop it on chair
14 14: Pick up eyeglass case, drop it on chair
15 15: Pick up grey rag, drop it in sink
16 16: Pick up golden can rag, drop it on table
17 17: Pick up red navaratna oil, drop it on table
18 18: Pick up purple shampoo, drop it on green rack
19 19: Pick up taki chips, drop it on countertop
20 20: Pick up bandage box, drop it in dustbin
21 21: Pick up white aerosol, drop it in trash can
22 22: Pick up peanut butter, drop it on countertop
23 23: Pick up blue gloves, drop it in sink
24 24: Pick up brown box, drop it on chair
25 25: Pick up axe body spray, drop it on shel

Listing 10: Ok-Robot Tasks (OKRB)

1 1: go to brown bookshelf, metal desk, wooden desk, kitchen
counter, and the blue couch in any order

2 2: move to grey door, then bookrack, then go to the brown
desk, then counter, then white desk

3 3: visit brown wooden desk but only after bookshelf
4 4: go from brown bookshelf to white metal desk and only

visit each landmark one time
5 5: go to brown wooden desk exactly once and do not visit

brown desk before bookshelf
6 6: go to brown desk only after visiting bookshelf, in

addition go to brown desk only after visiting white
desk

7 7: visit the blue IKEA couch, in addition never go to the
big steel door

8 8: visit white kitchen counter then go to brown desk, in
addition never visit white table

9 9: go to the grey door, and only then go to the bookshelf,
in addition always avoid the table

10 10: go to kitchen counter then wooden desk, in addition
after going to counter, you must avoid white table

11 11: Go to bookshelf, alternatively go to metal desk
12 12: Go to counter, alternatively go to metal desk
13 13: Go to the counter, but never visit the counter
14 14: do not go to the wooden desk until bookshelf, and do

not go to bookshelf until wooden desk
15 15: go to brown desk exactly once, in addition go to brown

desk at least twice
16 16: move to couch exactly twice, in addition pass by

counter at most once
17 17: navigate to the counter then the brown desk, in

addition after going to the counter, you must avoid
doorway

18 18: visit counter at least six times
19 19: either go to bookshelf then the brown desk, or go to

couch
20 20: navigate to the wooden door, the glass door and the

table, kitchen counter, and the blue couch in any
order

21 21: go to the painting, then find the kitchen table, then
front desk, then staircase

22 22: navigate to classroom but do not visit classroom
before the white table

23 23: only visit classroom once, and do not visit classroom
until you visit elevator first

24 24: Go to the staircase, front desk and the white table in
that exact order. You are not permitted to revisit

any of these locations
25 25: go to the front desk then the yellow office door, in

addition do not visit the glass door
26 26: go to the stairs then the front desk, in addition

avoid purple elevator
27 27: move to elevator then front desk, in addition avoid

staircase
28 28: go to front desk then the cabinet, always avoid the

elevator
29 29: Go to elevator, alternatively go to staircase
30 30: Visit the elevator exactly once, in addition visit the

front desk on at least 2 separate occasions
31 31: Go to the office, in addition avoid visiting the

elevator and the classroom
32 32: Visit the front desk, in addition you are not

permitted to visit elevator and staircase
33 33: Visit the purple door elevator, then go to the front

desk and then go to the kitchen table, in addition
you can never go to the elevator once you have seen
the front desk

34 34: Visit the front desk then the sofa then the white
table, in addition if you visit the sofa you must
avoid the television after that

35 35: Go to the glass door, but never visit the glass door
36 36: do not go to the white table until classroom, and do

not go to the classroom until white table
37 37: find the office, in addition avoid visiting the front

desk and the classroom and the table

Listing 11: Lang2LTL Complex temporal Tasks (CT)

1 1: Go to the red sofa but dont pass by any door then go to
the computer, the sofa is behind the pillar and on

the right side
2 2: Find the door with posters in front of the yellow

pillar then go stand by the tree but avoid any sofa
3 3: There is a cabinet, a television and a tree in this

room. I want you to go to the last item I mentioned
then pass by the second item but dont go close to the
first when you are going to thsecond item.",

4 4: Go to the trash bin, after that go to the large
television. Actually can you go to the laptop on the
table before doing all that?

5 5: Try to go to the tree without going near the trash bin.
6 6: Find the yellow trash bin and go to it, then go by the

white table. But before doing the first thing visit
where the fridge is then after the last thing, stop
by the red sofa but avoid theooden door with posters
",

7 7: Go to the television but avoid the tree.
8 8: Go to any trash bin but not the yellow one
9 9: Visit one of the televisions in this room then go to

the fridge to the left of the cabinet
10 10: I need you to first go to the table between the pillar

and the door with posters, then go to the tree. You
know what, ignore the last thing I asked you to go to
, after the first thing go tthe computer next to the
green box instead.

11 11: Go to the red sofa then the blue one next to the
cabinet but first pass by the book shelf

12 12: Go to water filter, dont pass by any computer to the
left of the red sofa

13 13: Visit these things in the following order the
microwave, then the black chair infront of the yellow
robot then the fridge, but before doing any of this

go to the robot
14 14: Go to the cabinet between the blue sofa and the brown

box.
15 15: I want you to go the cabinet but dont go near any

black chair. Hold on, actually can you pass by the
whiteboard before doing all that?

16 16: I need you to go to the red sofa but dont go anywhere
near the sink

17 17: You can either go as close as you can to the sink or
the plant pot but dont go near the yellow robot.

18 18: Go to the green curtain after that the large
television but try not to go near the red sofa

19 19: Go to the sink then the red sofa, then the guitar.
After that I want you to return to the first thing
you visited.

20 20: I need you to go to the sink then any computer on a
table but before you start that can you first go to

the bookshelf, when you are done with all that,
return to brown box

21 21: There are a couple of things in this room, a coffee
machine, a robot, a computer and a plant pot. Visit
the second item I mentioned then the first, after
that visit the brown box, then go the items you
haven’t visited yet.

22 22: Avoid any cabinet but go get the mug on the blue sofa
and take it to red one

23 23: Please get me my plant pot from between the sofa and
the sink, bring it to the white cabinet

24 24: Can you pick up my book from the left side of the
television and bring it to me? I am sitting on the
couch which is to the right of the door with posters.
Make sure to never go near the trhbin while doing

all this, it on the yellow table.
25 25: Bring the green plush toy to the whiteboard infront of

it, watchout for the robot infront of the toy
26 26: Go get my yellow bag and bring it to the table between

the yellow pillar and the wooden door with posters
next to the whiteboard

27 27: Find the bottle that is on the table to the left of
the computer and bring it to the wardrobe that is
next to the glass door

28 28: Go to the cabinet between the blue sofa and the yellow
robot or the cabinet to the left of the blue sofa.

29 29: Go take the green toy that is next to the sofa under
the poster and bring it to the bookshelf

30 30: I have a white cabinet, a green toy, a bookshelf and a
red chair around here somewhere. Take the second

item I mentioned from between the first item and the
third. Bring it the cabinet butvoid the last item at
all costs.

31 31: Hey I am standing by the whiteboard infront of the
bookshelf, can you bring me the mug from the table to
the left of the fridge?

32 32: Never pass by a robot, but i need you to bring the bag
on the table to the cabinet

33 33: Take a soda can to the fridge, you can find one on the
table to the left of the blue sofa

34 34: Hey, can you pick up my bag for me? It is under the
table infront of the glass door, bring it to the
cabinet. Actually you know what, forget what i asked
for and bring the green toy instea its at the same
place",

35 35: Go to the sink and take the mug beside the coffee
maker, drop it off at the red sofa

36 36: Go to the sofa behind the chair next to the orange
counter in front of the pillar

37 37: I want you to go visit the chair behind the sofa then
the green bag, do that 3 times but during the second
time avoid the fridge

38 38: Go bring the plush toy between the sofa and the
television to the couch, my cat is on the brown table
so please dont pass near the table when you are

returning with the toy
39 39: I think I left my wallet on the kitchen counter, go

get it i will meet you at the bed. There is a lantern
near the bed, make sure you dont hit it

Listing 12: Complex Spatiotemporal Tasks (CST)

REFERENCES

[1] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, “Robots that
use language,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, pp. 25–55, 2020.

[2] V. Blukis, R. Knepper, and Y. Artzi, “Few-shot Object Grounding
and Mapping for Natural Language Robot Instruction Following,” in
Proceedings of the 2020 Conference on Robot Learning. PMLR,
Oct. 2021, pp. 1829–1854, iSSN: 2640-3498. [Online]. Available:
https://proceedings.mlr.press/v155/blukis21a.html

[3] R. Patel, E. Pavlick, and S. Tellex, “Grounding Language to
Non-Markovian Tasks with No Supervision of Task Specifications,”
in Robotics: Science and Systems XVI. Robotics: Science and
Systems Foundation, July 2020. [Online]. Available: http://www.
roboticsproceedings.org/rss16/p016.pdf

[4] C. Wang, C. Ross, Y.-L. Kuo, B. Katz, and A. Barbu, “Learning
a natural-language to LTL executable semantic parser for grounded
robotics,” in Proceedings of the 2020 Conference on Robot Learning.
PMLR, Oct. 2021, pp. 1706–1718, iSSN: 2640-3498. [Online].
Available: https://proceedings.mlr.press/v155/wang21g.html

[5] K. Zheng, D. Bayazit, R. Mathew, E. Pavlick, and S. Tellex, “Spatial
Language Understanding for Object Search in Partially Observed
City-scale Environments,” 2021 30th IEEE International Conference
on Robot & Human Interactive Communication (RO-MAN), pp.
315–322, Aug. 2021, conference Name: 2021 30th IEEE International
Conference on Robot & Human Interactive Communication (RO-
MAN) ISBN: 9781665404921 Place: Vancouver, BC, Canada
Publisher: IEEE. [Online]. Available: https://ieeexplore.ieee.org/
document/9515426/

[6] M. Berg, D. Bayazit, R. Mathew, A. Rotter-Aboyoun, E. Pavlick, and
S. Tellex, “Grounding Language to Landmarks in Arbitrary Outdoor
Environments,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), May 2020, pp. 208–215, iSSN: 2577-087X.
[Online]. Available: https://ieeexplore.ieee.org/document/9197068

[7] M. Cosler, C. Hahn, D. Mendoza, F. Schmitt, and C. Trippel, “nl2spec:
Interactively Translating Unstructured Natural Language to Temporal
Logics with Large Language Models,” in Computer Aided Verification,
C. Enea and A. Lal, Eds. Cham: Springer Nature Switzerland, 2023,
pp. 383–396.

[8] X. Wang, W. Wang, J. Shao, and Y. Yang, “LANA: A Language-
Capable Navigator for Instruction Following and Generation,” in
2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Vancouver, BC, Canada: IEEE, June 2023,
pp. 19 048–19 058. [Online]. Available: https://ieeexplore.ieee.org/
document/10203301/

[9] S.-M. Park and Y.-G. Kim, “Visual language navigation: a survey
and open challenges,” Artificial Intelligence Review, vol. 56, no. 1,
pp. 365–427, Jan. 2023. [Online]. Available: https://doi.org/10.1007/
s10462-022-10174-9

[10] D. Shah, B. Osiński, B. Ichter, and S. Levine, “LM-Nav: Robotic
Navigation with Large Pre-Trained Models of Language, Vision,
and Action,” in Proceedings of The 6th Conference on Robot
Learning. PMLR, Mar. 2023, pp. 492–504, iSSN: 2640-3498.
[Online]. Available: https://proceedings.mlr.press/v205/shah23b.html

[11] B. Chen, F. Xia, B. Ichter, K. Rao, K. Gopalakrishnan, M. S.
Ryoo, A. Stone, and D. Kappler, “Open-vocabulary Queryable
Scene Representations for Real World Planning,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), May
2023, pp. 11 509–11 522. [Online]. Available: https://ieeexplore.ieee.
org/document/10161534

[12] B. Yu, H. Kasaei, and M. Cao, “L3MVN: Leveraging Large
Language Models for Visual Target Navigation,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct. 2023, pp. 3554–3560, iSSN: 2153-0866. [Online]. Available:
https://ieeexplore.ieee.org/document/10342512

[13] C. H. Song, B. M. Sadler, J. Wu, W.-L. Chao, C. Washington,
and Y. Su, “LLM-Planner: Few-Shot Grounded Planning for
Embodied Agents with Large Language Models,” in 2023 IEEE/CVF
International Conference on Computer Vision (ICCV). Paris,
France: IEEE, Oct. 2023, pp. 2986–2997. [Online]. Available:
https://ieeexplore.ieee.org/document/10378628/

[14] C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual Language
Maps for Robot Navigation,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA), May 2023, pp. 10 608–10 615.
[Online]. Available: https://ieeexplore.ieee.org/document/10160969

[15] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as Policies: Language Model Programs for
Embodied Control,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), May 2023, pp. 9493–9500.
[Online]. Available: https://ieeexplore.ieee.org/document/10160591

[16] J. X. Liu, Z. Yang, I. Idrees, S. Liang, B. Schornstein,
S. Tellex, and A. Shah, “Grounding Complex Natural Language
Commands for Temporal Tasks in Unseen Environments,” in
Proceedings of The 7th Conference on Robot Learning. PMLR,
Dec. 2023, pp. 1084–1110, iSSN: 2640-3498. [Online]. Available:
https://proceedings.mlr.press/v229/liu23d.html

[17] E. Hsiung, H. Mehta, J. Chu, X. Liu, R. Patel, S. Tellex,
and G. Konidaris, “Generalizing to New Domains by Mapping
Natural Language to Lifted LTL,” in 2022 International Conference
on Robotics and Automation (ICRA). Philadelphia, PA, USA:
IEEE Press, May 2022, pp. 3624–3630. [Online]. Available:
https://doi.org/10.1109/ICRA46639.2022.9812169

[18] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei,
“VoxPoser: Composable 3D Value Maps for Robotic Manipulation
with Language Models,” in Proceedings of The 7th Conference on

https://proceedings.mlr.press/v155/blukis21a.html
http://www.roboticsproceedings.org/rss16/p016.pdf
http://www.roboticsproceedings.org/rss16/p016.pdf
https://proceedings.mlr.press/v155/wang21g.html
https://ieeexplore.ieee.org/document/9515426/
https://ieeexplore.ieee.org/document/9515426/
https://ieeexplore.ieee.org/document/9197068
https://ieeexplore.ieee.org/document/10203301/
https://ieeexplore.ieee.org/document/10203301/
https://doi.org/10.1007/s10462-022-10174-9
https://doi.org/10.1007/s10462-022-10174-9
https://proceedings.mlr.press/v205/shah23b.html
https://ieeexplore.ieee.org/document/10161534
https://ieeexplore.ieee.org/document/10161534
https://ieeexplore.ieee.org/document/10342512
https://ieeexplore.ieee.org/document/10378628/
https://ieeexplore.ieee.org/document/10160969
https://ieeexplore.ieee.org/document/10160591
https://proceedings.mlr.press/v229/liu23d.html
https://doi.org/10.1109/ICRA46639.2022.9812169

Robot Learning. PMLR, Dec. 2023, pp. 540–562, iSSN: 2640-3498.
[Online]. Available: https://proceedings.mlr.press/v229/huang23b.html

[19] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and
N. Suenderhauf, “SayPlan: Grounding Large Language Models
using 3D Scene Graphs for Scalable Robot Task Planning,” in
Proceedings of The 7th Conference on Robot Learning. PMLR,
Dec. 2023, pp. 23–72, iSSN: 2640-3498. [Online]. Available:
https://proceedings.mlr.press/v229/rana23a.html

[20] R.-Z. Qiu, Y. Hu, G. Yang, Y. Song, Y. Fu, J. Ye, J. Mu,
R. Yang, N. Atanasov, S. A. Scherer, and X. Wang, “Learning
Generalizable Feature Fields for Mobile Manipulation,” CoRR,
vol. abs/2403.07563, 2024, arXiv: 2403.07563. [Online]. Available:
https://doi.org/10.48550/arXiv.2403.07563

[21] P. Liu, Y. Orru, J. Vakil, C. Paxton, N. Shafiullah, and L. Pinto,
“Demonstrating OK-Robot: What Really Matters in Integrating Open-
Knowledge Models for Robotics,” in Robotics: Science and Systems.
Robotics: Science and Systems Foundation, July 2024. [Online].
Available: http://www.roboticsproceedings.org/rss20/p091.pdf

[22] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile
robotics tasks: A survey,” Robotics and Autonomous Systems,
vol. 66, pp. 86–103, Apr. 2015. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0921889014003030

[23] J. Crespo, J. C. Castillo, O. M. Mozos, and R. Barber,
“Semantic Information for Robot Navigation: A Survey,” Applied
Sciences, vol. 10, no. 2, p. 497, Jan. 2020, number: 2 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/2076-3417/10/2/497

[24] A. Pronobis, P. Jensfelt, and J. Little, Semantic Mapping with Mobile
Robots. Stockholm: KTH Royal Institute of Technology, 2011.

[25] E. Rosen, S. James, S. Orozco, V. Gupta, M. Merlin, S. Tellex,
and G. Konidaris, “Synthesizing Navigation Abstractions for
Planning with Portable Manipulation Skills,” in Proceedings of
The 7th Conference on Robot Learning. PMLR, Dec. 2023,
pp. 2278–2287, iSSN: 2640-3498. [Online]. Available: https:
//proceedings.mlr.press/v229/rosen23a.html

[26] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial intelligence,
vol. 2, no. 3-4, pp. 189–208, 1971.

[27] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver,
L. P. Kaelbling, and T. Lozano-Pérez, “Integrated Task and
Motion Planning,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, no. Volume 4, 2021, pp.
265–293, May 2021, publisher: Annual Reviews. [Online].
Available: https://www.annualreviews.org/content/journals/10.1146/
annurev-control-091420-084139

[28] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “PDDLStream:
Integrating Symbolic Planners and Blackbox Samplers via Optimistic
Adaptive Planning,” Proceedings of the International Conference
on Automated Planning and Scheduling, vol. 30, pp. 440–448,
June 2020. [Online]. Available: https://ojs.aaai.org/index.php/ICAPS/
article/view/6739

[29] R. Holladay, T. Lozano-Pérez, and A. Rodriguez, “Planning for
Multi-stage Forceful Manipulation,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), May 2021,
pp. 6556–6562, iSSN: 2577-087X. [Online]. Available: https:
//ieeexplore.ieee.org/document/9561233

[30] J. Pan, G. Chou, and D. Berenson, “Data-Efficient Learning of
Natural Language to Linear Temporal Logic Translators for Robot
Task Specification,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), May 2023, pp. 11 554–11 561.
[Online]. Available: https://ieeexplore.ieee.org/document/10161125

[31] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn,
A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen,
X. Wang, X. Zhai, T. Kipf, and N. Houlsby, “Simple Open-Vocabulary
Object Detection,” in Computer Vision – ECCV 2022, S. Avidan,
G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds. Cham:
Springer Nature Switzerland, 2022, pp. 728–755.

[32] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and
R. Girshick, “Segment Anything,” in 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), Oct. 2023, pp. 3992–4003,
iSSN: 2380-7504. [Online]. Available: https://ieeexplore.ieee.org/
document/10378323

https://proceedings.mlr.press/v229/huang23b.html
https://proceedings.mlr.press/v229/rana23a.html
https://doi.org/10.48550/arXiv.2403.07563
http://www.roboticsproceedings.org/rss20/p091.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0921889014003030
https://linkinghub.elsevier.com/retrieve/pii/S0921889014003030
https://www.mdpi.com/2076-3417/10/2/497
https://proceedings.mlr.press/v229/rosen23a.html
https://proceedings.mlr.press/v229/rosen23a.html
https://www.annualreviews.org/content/journals/10.1146/annurev-control-091420-084139
https://www.annualreviews.org/content/journals/10.1146/annurev-control-091420-084139
https://ojs.aaai.org/index.php/ICAPS/article/view/6739
https://ojs.aaai.org/index.php/ICAPS/article/view/6739
https://ieeexplore.ieee.org/document/9561233
https://ieeexplore.ieee.org/document/9561233
https://ieeexplore.ieee.org/document/10161125
https://ieeexplore.ieee.org/document/10378323
https://ieeexplore.ieee.org/document/10378323

	Appendix Summary
	Extended Related Works
	Foundation Models in Robotics
	Planning Models in Robotics

	Language Instruction Module
	Interactive Symbol Verification

	Spatial Grounding Module
	3D Spatial Comparators

	Task and Motion Planning Module
	Robot Skills
	Evaluation and Baseline Details
	NLMap-Saycan Implementation Prompt
	Code-as-Policies Implementation Prompt
	Instruction set

	References

